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Nonlinear capillary-gravity waves under an edge condition
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Abstract. The objective of this paper is to investigate the forced motion of nonlinear capillary-gravity waves in

a waterfilled circular basin by a harmonic vibration applied to its side wall under Evans'’s or Hocking's edge con-
dition at a contact line. The forcing frequency is near a resonance frequency under the classical edge condition of
the basin. Two complex-amplitude equations for the excited eigenmode at the resonance frequency corresponding
to these two edge conditions are derived. The solutions to these equations display quite different behavior and an
edge condition indeed has a great influence on the excited surface waves.
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1. Introduction

The problem of forced capillary-gravity waves generated by an external harmonic vibration
applied to part of the container boundary has been studied in the past. The experimental
work on a water-filled circular basin was reported by Wamngl. [1], and later by Hsieh

and Denissenko [2]. The generation of capillary-gravity waves in a circular cylinder with a
fixed contact line was discussed by Miles and Henderson [3], among others. Shen, Sun and
Hsieh [4] dealt with the linear problem of forced capillary-gravity waves generated in a water-
filled circular basin by a prescribed harmonic forcing to the side wall. At a contact line where
the side wall and the free surface intersect, they prescribed Evans’s edge condition [5] that the
slope of the free surface in the plane normal to the side wall at the contact line (normal surface
slope) is proportional to the prescribed wall motion of the side wall. An exact solution was
obtained by means of the Green’s function method. In addition, Shen and Yeh [6] presented
an exact solution derived by the same method for the linear problem under Hocking’s edge
condition [7] at the contact line, that is, the time derivative of the free surface is proportional
to the normal surface slope. The eigenvalue problem under Hocking's edge condition was
studied by Miles [8] by a different approach. He obtained the solution given in [4] and an
approximate solution [9] for the same linear problem studied in [6].

The objectives of this paper are to develop a weakly nonlinear theory by an asymptotic
approach for an excited capillary-gravity wave in a water-filled circular basin under Evans’s
or Hocking’s edge condition at a contact line and to compare the results under these two
edge conditions. We assume that the forcing frequency is near a resonance frequency under
the classical edge condition that the normal surface slope at the contact line vanishes. By
means of a two-timing asymptotic expansion and a solvability condition for the equations of
the third order approximations in the asymptotic expansion, the amplitude equations of the
excited surface waves at the resonance frequency are derived. A weakly nonlinear theory for
excited surface waves in a water-filled circular basin without surface tension was developed
by Sun, Shen and Hsieh [10], and the results obtained in [10] has characteristics similar to
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Figure 1. The circular basin.

those under Evans’s condition obtained here. We also remark that in order to carry out an
asymptotic investigation for our objectives certain parameters in the edge conditions have to
be assumed small. Under Evans’s edge condition, the amplitude equation can be reduced to
a two-dimensional Hamiltonian system. The solutions are bounded and the orbits are closed.
However, under Hocking’s edge condition, there is no closed orbit in the phase plane of the
amplitude function. Furthermore, the absolute value of a solution of the amplitude equation
for all orbits except the heteroclinic ones goes to infinity as time goes to infinity. Our work
thus indicates that an edge condition indeed has a great effect on the behavior of the excited
surface waves.

In Section 2, the problem is formulated with Evans’s or Hocking’s edge condition pre-
scribed at a contact line. A two-timing method is then used to derive a complex-amplitude
equation under each edge condition in Sections 3 and 4. The behavior of solutions of the
amplitude equations is discussed in Section 5, and some numerical results are also presented
there. The tedious coefficients in the derivation of amplitude equations, which are obtained by
symbolic manipulations via Mathematica, will not be presented in the paper, but are available
on request.

2. Formulation

We consider a circular basin filled with water and an external harmonic forcing applied to the
side wall of the basin. Le¥ be the open domain occupied by the wafebe the free surface
denoted by* = n*(r*, 6, *) wherer*, 0, z* are the cylindrical coordinates andis the time,

L be the side walk* = a + F*(6, z*, t*) where F* is a prescribed forcing functiord; be

the contact line, an® be the bottom of the basin ari = —A4* (Figure 1). Assume that the
water motion is irrotational, and the governing equation and boundary conditions with surface
tension in terms of a potential functiart are

Ofepe + () TR + () P + ¢k =0 NV, (1)
at the free surface S

N4 () e ds + ol — ¢ =0, )
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O + (1/2)((07:)7 + (1) 72(6) )% + (97)7) + gn* =

3)
T*V* - (V" /(1 + [V [HY/?),
at the side wallL
Fi— o5 + () 2F 08 + Fih =0, (4)

at the bottomB

¥ =0, (5)

whereg is the constant gravitational acceleratidrt, is the constant surface tension coeffi-
cient, andv* is the gradient in the*, 6, z*-coordinates.

In the following, Evans’s and Hocking’s edge conditions are introduced at a contact line
I'. At ", under Evans’s edge condition,

ng =K., (6)
and under Hocking’s edge condition,
Npe = MMy, (7

whereK is a given smooth function ¢fands*, and)* is a positive constant.
To nondimensionalize (1) to (7), we introduce the following nondimensional variables

z=z%/a,r =r*/a,h = h*/a,n =n"/a, F = F*/a,t = (g/a)"?t",
b = ¢*/(a(ga)?, T = T*/(ga?), . = 1*/(ga)V?,

and in terms of them, (1) to (7) become

Asp=0 inV, (8)
atz =n(r, 0, 1):

N: + Vﬁzf]e(l)e + nrd)r - d)z - 0’ (9)

O+ (1/2)(d7 +r 205 + 02 +n =TV - (Vo(1+ |[VnHY?), (10)

atr =1+ F(z,0,1):

Fi =&, + A+ F) 2 Fodg + Fo. =0, (11)
atz = —h:

¢. =0, (12)
and at; =n(r,0,1),r =1+ F(z, 0, 1), under Evans’s edge condition,

. = K(0,1/(g/a)"'?), (13)
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and under Hocking’s edge condition,
M = Sy, (14)

whereAs = 92/9r? + r=19/0r 4+ r=202/06% 4 82/0z2, V is the gradient in the — 6 — z
coordinates, andl = » 1.

We study equations (8) to (14) by means of a two timing asymptotic expansion. First we
define the slow time by t = £?t wheree > 0 is a small parameter, and assume

F = €8F(z2,0,1, 1) = e3(iw) "1 f (z) cosmB(d @+t _ grir+itd)y (15)

K = 2K (0,1, 1) = e(iw) Lo cosm(g@ ) _ grilwritd)y (16)

§ = €%, (17)

b = &0, 2,6, 1) =ehy + e+ 2p3+ -, (18)

N = 0,1 =+ +edng o, (19)
whered; andn;,i = 1,2,3,..., are independent af We note here that the amplitude of

the harmonic forcing functiorf is assumed small and consequently the amplitudg
the Evans’s condition is of the same orderfas-urthermore, we assume the nondimensional
paramete = (ga)~/2/2* in the Hocking’s condition is also small. The precise orderings
of these parameters are specified so that the amplitude of the eigenmode corresponding to a
resonance frequency under the classical edge condition can be determined by the equations
for ¢s.

Substitution of (15) to (19) in (8) to (14) will yield a sequence of equations for the succes-
sive approximations.

3. First- and second-order approximations

For both edge conditions, the equations for the first-order approximations are the same as
follows:

Aspy = 0 in0<r<1,—-h<z<0, (20)
b —my = 0, oy +m=TAmm atz=0, (21)
¢, = 0 atr =1, (22)

b1 = 0 atz=—h, (23)

Ny = 0 atr =1andz =0, (24)

whereA; = 9%/9r? +r=19/0r + r=20%/96°.
It follows from (21) and (24) that

dur + ¢ = TAzdr, atz =0, (25)
¢, =0 atr=1z=0. (26)

Assume that the solutionis, andn, of (20) to (26) have the form of

b1 = (@1(r, 2, DEY +1(r, z, VYEH) cosm,
m = (i z, DY + fa(r, 2z, VE) cosmo,
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Theng; satisfies

Q1+ oy —mPr P+ @1 =0 IN0<r<1—-h<z<0, (27)
01 — Q%1 = T (@1, + 7 T@1. —mPr 291 atz =0, (28)
0, =0 atr =1, ¢, =0 atz=—n, (29)
P17z atr = 17 = 07 (30)

and1), satisfies
1= () ‘e atz=0. (31)
Equations (27) to (30) can be solved by separation of variables, and we obtain
91 = p(V)Ju(omjr) cosho,;(h + z),

wherep(t) is a complex function ot, o,,; are the positive roots af; () = 0 and J,(r) is
themth order Bessel function of the first kind. By (27), (28) implies

P17z — Qz(pl = _T(plzzz atz =0,
and it follows that

Q% =02

mj

= 0j(1+ To2;) tanh(o,,;h), (32)

and Q,,; are called the resonance frequencies of the water-filled basin under the classical
edge conditiony, = 0 atTI'. In what follows, we shall just refer to them as the resonance
frequencies of the basin.

Now we assume is one of the resonance frequencfes, of the excited wave where
is a positive integer, that isy = ,,,, and denote&?,,, ando,,, by Q ando, respectively,
hereafter. Thus

d1 = J,,(or) cosho(h + z) cosmO(p(1)€¥ — p(r)e '), (33)
and by (31),
n1 = —iQ o sinh(oh) J,,(or) cosmb(p(1)e¥ — p(v)e ). (34)

Here p(7) is called the complex-amplitude function of the excited wave and will be deter-
mined by the equations for the third-order approximations.

For both edge conditions, the equations for the second-order approximations are also the
same as follows:

A3p,=0 In0<r<1 -h<z<0, (35)
atz =0,
b2e — Mot = =011 + N1 b1 + 7 N1ed1e = Hi(M1, b1), (36)
b2+ M2 = —b1n1 — (/25 + 1208 + 02) + T(Marr + 7 *N2ep + 7 20)
= Ho(M1, ¢1) + T Aomp, (37)
Gy = 0 atr=1 ¢p=0 atz=—h (38)
o = O atr=1z=0. (39)
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Elimination ofn; in (36) and (37) yields, by (33) and (34),at 0,

Qo + G2, — TApdo, = H1+4 Hy — TAyh1 = Hs A |
= I((Wi(r) + Wa(r) cos 2m6 (p?e® — p2e '), (40)

where the detailed expressions of the real functidhé) and W, (r) are omitted.
It follows from (36) and (39) that

¢p, = Hy, =0 atr=1,z=0. (41)
Then, by time-reducing, (35), (38), (40) and (4d;),can be expressed as

2 = i(Bow, (r, 2) + Bu,w, (1, 2) €08 2m (p* (1)€Y — pP(0)e™ ™). (42)
whereBg w, (r, z) and B, w, (r, z) are the solutions of the following equations ®y ;:

B, +r 1B, — 4% 2B+B,.,=0 in0<r<1—-h<z<0,
B, —4Q°B+TB,,, = G(r) atz=0,

B, =0 atr=1, B.=0 atz=—h,

B,,=0 atr=1z=0.

By ¢ (r, z) can be found and is given by
By g(r,z) = Zdj cosh(o e j(h + 2)) Joe(0(20),7)
Jj=1
where
1
d :/ G (r) J20(0(20)jr)rdr (A ey 1 J2¢ (6 2657 ||> COSHo 20) 1)) 77,
0

Agj = Qb — 427 #0,
1
[ J2¢ (0207117 = /0 J5,(020);1)0r = (055 ; — 4%) J5,(0(20))) (G (20)))

and we assume that there existsjnsuch that/}, (o2 ;) = 0 and Qg; = 2€2 for £ = 0 or
m. From (36), at = 0,

Ny = b2 — Hi = i(Wi(r) + Wa(r) cos 2m(p*e*¥ — pA(v)e '), (43)

Where W,(r),i = 1 to 2, are real, and their detailed expressions are not presented here.
Assumen; has the form of

N2 = M€ + fe7, (44)
We substitute (44) in (43) and obtain

fiz = (2Q) 7 (Wa(r) + Wa(r) €08 2m8 p(v).
Hence

N2 = (2Q2)"H(Wi(r) + Wa(r) cos 2m@ p*(v).(p?€™ — p(t)e”'™) (45)
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We remark that since a resonance frequency is in general not an eigenfrequency of the time-
reduced homogeneous equations corresponding to (35) to (39), a solvability condition cannot
be obtained at this stage for a resonance frequency and we have to proceed to the equations
for the third-order approximations.

4. Third-order approximations

The equations for the third-order approximations are

Azps=0 in0<r <1 —h<z<O0, (46)
atz =0:
¢3z — N3 = _d)&znl - d)]zznZ - (1/2)(1)]1&7]% + N1 + n2r¢lr + nlrd)Zr
+ N1 N1b12 + 72 (M10d2e + N20b1e + N1ed10:M1)
= Hi(y, ¢1, N2, $2), (47)

bz — N3 = — P21 — P1:m2 — (1/2) + d1czf — b1c — drrb2r — Prrbrrzma
— 12 (d10d20 + P10P10:M1) — breb2; — P P1zeM1
+ T(2r 3ngym2y — 27 20 pene + 72002 + 72023y,
+ 7 — 3/, + I My + 7P N10e + 7 N1)

+ T'Azng
= Hs(M1, b1, M2, $2) + T Azmg, (48)
b3 = F, = f(z) cosmO(@ S red) 4 o l@Hhid)y — pr gty = 1, (49)
¢3, = 0 atz = —h. (50)

At r = 1 and z= 0, under Evans’s edge condition
N3 = K = (iw) " ta cosmO(d@+H+d) _ gri(titd)) (51)
or under Hocking's edge condition,
N3 = Snlt- (52)
It follows from (47) and (48) that
ba + b3, — TA2ds, : Ha+ Hs, — TAHys = N atz = 0. (53)
By (47), (51) implies

¢3rz = K; + H4r = Kt
— o coSmO(@ ATt | gi(@thid)y
= De atr=1:=0 (54)

and (52) implies

¢3rz = 8(1)11[ + H4r = 8(1)121
= i8Qo sinh(ch) J,, () cosmO(p(1)e?¥ — p(r)e ™)
= Dy atr=1,z=0. (55)
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Since only the terms with the factor ce$€% in the nonlinear interactions o, N, D and
Dy can cause resonance, we may expiess/, N, Dy andDy as

d3 = Us(r, z, ©) cosmOe¥ + ds(r, 2,0, 1, 1) + c.c., (56)
M = M(z, t)cosmbe® + M(z,0,1, 1) + c.c., (57)
N = N, v)cosmbe® + N(r, 0,1, 1) + c.c., (58)
Dy = Dg(v) cosm0e® + Dg(6,1,7) + c.c. (59)
Dy = Dy(t)cosmBe® + Dy (0,1, 1) + c.c. (60)

where®s, M, N, Dy andDy do not contain the factor casfe® . Substitution of (56) to (60)
in (46) to (55) yields

Vs + 7 Mg —m?r Y3+ Pa., =0 in0<r<r,—h <z <0, (61)
V3. — Q%3 — T (Warpe + 1~ Mg, —m?r203) = N(r, 1) atz =0, (62)
V3 = M(z,1) atr =1, (63)
V3, =0 atz=—h, (64)
Vs, =D;(x) atr=1z7=0 (65)

wherej = E for Evans’s edge condition anjd= H for Hocking’s edge condition.

Sinceg is the resonance frequency anglor) cosh(c(k + z)) is the corresponding eigen-
function for (27) to (30), the extra termdg, N andD; in (61) to (65) must satisfy a solvability
condition. We multiply (61) by J,, (or) coshio(h + 7)), integrate the resulting equation over
V, and make use of the divergence theorem and (62) to (65) to obtain the solvability condition

N 0
—Clof(;:z) /0 N(r, ©rd, (or)dr + /_h M (z, ) cosho(h + z)dzJ, (o)
cosh(ch)
1S 0Dy = 0 0

where

Mz, v = fe?™,
Di(t) = ad™™ if j=E
D;(v) = i8Qosinhoh)J,(0)p(t) if j=H
N(r,v) = iN1(r)p'(v) + Na(r) p(0) | p (D)%,
N1(r) = —2QJ,,(or)coshoh),
d
do’
and the detailed expressionséf(t) are not presented here.
Hence it follows from (66) that for Evans’s edge condition, thajis; E,

n/n

iaop’ + arp|pl® + apd® =0, (67)
and for Hocking’s edge condition, that is—= H,

iaop’ + arp|pl® + ap€™ +iazp =0, (68)
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-3

Figure 2.The phase plane of (69), (70) as < 0, Figure 3.A phase plane of (75), (76).
A<0,0<c¢2 <cp.

where

1
ao = coshioh)(1+ Toz)lf N1(r)rJ,, (or)dr,
0
= —2Qcostt(oh)(1+ To®) 7 Y|J,(or)|? <0,

1
a, = COSI’(O’]’I)(l—F Tcz)l/ No(r)rJ, (O’I")d}",
0
0
ag = J,(0) (/ f(z) cosho(h + z)dz + aT coshoh)(1+ T02)1> ,
—h

0
an = Jn(©) / F(2) coshoh + 2)dk,
—h

a3 = T8Qo sinh(oh)J2(0) cosioh)(1+ To?) ™t > 0.

5. Discussion

In this section, the behavior of the solutions of (67) and (68) is studied. First we consider (67).
Let p(1) = (u + iv)é* whereu andv are real, and substitution of it in (67) yields

' = W —cw?®+v%) = —H,, (69)

/

V' = —hu+ cru® +v3) + ¢, = Hy, (70)
wherecy; = ay/ag, c; = ag/ag, and
H = (c1/8) u? + v®2 — (n/2)(u? + v?) + cou = constant (71)

Since (69) and (70) are a 2-dimensional Hamiltonian system, by (71) all solutions of (69)
and (70) are bounded and all trajectories in the phase plane (u,v) are closed and not mutually
transversal. The solution behavior depends upon the fixed points of (69) and (70). They are
either centers or saddle points. As an example, the typical phase plane of (69) and (70) for
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Figure 4.A contour plot of the free surface for Figure 5.A contour plot of the free surface for
Q =17431. Q =3.1142.

c1 <0,N<0,0<c <co= (2N/3)(N/(3c1)Y? is shown in Figure 2, where two fixed
points are centers and one fixed point is a saddle. A detailed discussion of (69) and (70) can
be found in [11] (Part 3, pp. 162—-164).

Next We shall study the behavior of solutions for (68) under Hocking’s condition. Let
p(v) = W(1)d?*t) and (68) becomes

iW =MW — by W|W|? — b, — ibsW, (72)

whereb, = ay/ag, b» = ay/ag, b3 = az/ag andbz < 0 becauseg < 0 and ¢ > 0.
If b = 0, then (72) is linear and the solution of (72) is

W = —by/ (b3 +in) + Ce ttD,

whereC is a constant. Sindey < 0, W approaches-b,/ (b3 +i)) ast — —oo and|W| goes
tooco ast — —oo.

If by #£ 0, we letW = kW asb, > 0or W = —kW asb; < 0 wherek = |b1|¥2. Then
(72) becomes

iW =AW — W|WI|?>—b—ibsW if by >0, (73)
or

iW =AW — W|W|?—=b—ibsW if by <0, (74)
whereb = b,/ k. Since (73) and (74) only differ by the sign uf we shall just consider (73)
forany .

Let W = u + iv whereu andv are two real functions of. Substitution in (73) yields a
system of two first order differential equations

u = w—vW?+ v — bau = fi(u,v), (75)
vV = =+ u@?+v%) —bv+b = fou,v). (76)
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The fixed points of (75) and (76) are the soluti@ns$, v*) satisfying
P(U*) — U*S _ 2)\b3b_lv*2 + ()\2 + b%)b%b_zv* _ bgb_l — O,
and
u* = by v*(\ — bby1v*).
In addition,
u*? v = bbglv*.

Sincebs < 0, a fixed point of (75) and (76) can be a spiral source, nodal source, or saddle
point. In the case of < 0, there is only one fixed point, a spiral source. In the case f0,

the fixed points depend upon the valueskef R, R3, andR, as functions obs and. defined
below:

2
Ry(b3, \) = b3, Ra(bs, \) = 2—7(9b§x +23 - (02 = 33)¥?),

2
Ra(b3, W) = b—,;x + 2i7x3, Ry(b3, ) = 237 (95N + 2% — (02 — 3p)¥?).
A typical phase plane of (75) and (76) in the case of {Rin R,} > b?> > Rz andb? # R;

as\ > —2b3 is shown in Figure 3. There are three fixed points, a spiral source, a saddle
source and a nodal source. We see that the amplitude of all solutions are unbounded except
at the fixed points and along the orbits which connect two fixed points. The same behavior
of the solutions of (75) and (76) is also displayed in the phase planes for other cases. In fact,
a rigorous proof based on Poincare-Bendixson theorem and Bendixson criterion (Chapter 1,
[12]) can be constructed to show that there are no closed orbits for (75) and (76). A detailed
discussion of (75) and (76) and the proof can also be found in [11] (Part 3, pp. 165-171).

To illustrate the results obtained, we shall study (34) numerically, which gives the expres-
sion for the first-order approximatian to the free surface. Figures 4 and 5 present the contour
plots of n; for constant t and, where we choose &2, h=0.5 and &0.01. In Figure 4,

Q = 1.7431 is the first resonance frequency and four extremum points appear at the rim. In
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Figure 5 = 3.1142 is the second resonance frequency and the extremum points also appear
inside the rim. These graphs are similar to those for the linear problem considered in [4]. Then
we plot,/(u? + v2) vs t for typical cases under Evans’s and Hocking’s condition. In Figure 6
we choosel = 3,¢c1 = 1,¢; = 1, u(0)= —1 andv(0) = 0, and the graph represents a
bounded and periodic solution for (69), (70) under Evans’s condition. In Figure 7 we choose
A=3,b=172,b3 = —1,u(0)= —1 andv(0) = 0, and the graph represents an increasing
solution with time for (75), (76) under Hocking’s condition.

Under Evans's condition resonance frequencies can be obtained by séttyial to
zero and linearizing the governing equations [3]. However, under Hocking’s condition it is
shown [6] that there are no real resonance frequencies of the linearized governing equations
without forcing. In the theory developed here, we assdnmreHocking’s condition is small
so that the equations for the first-order approximatignyield the resonance frequencies
under the classical edge condition. The two amplitude equations derived under these two edge
conditions also display quite different behavior. The wave amplitude is bounded for any time
under Evans’s condition, but generally increases with time under Hocking’s condition. As
indicated in [1], [2], the amplitude of an excited wave increases with time, and eventually
several jets spurts high into the air, depending on the setting of the experiments. At this stage
we can only conclude that an edge condition at a contact line has a dominant effect on the
behavior of an excited wave, and needs more investigation.
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